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We present an algorithm to allow full placement of all stability exponents (Poincaré or Lyapunov)
in a controlled chaotic system. The linear quadratic regulator of classical control theory is recast
to allow specification of the controlled system Lyapunov exponents and initial and final principal
dynamical directions. In the process, a positive definite functional of the control is minimized. The
boundary value problem that must be solved is linear, and converges in one iteration. Successful
results are reported, applying the method to the Duffing oscillator, the Lorenz system, and the
restricted problem of three bodies, for both periodic orbits and general trajectories.

PACS number(s): 05.45.+b

I. INTRODUCTION

Control theory for constant coefficient systems is very
well developed, but the situation is less clear in the case of
time dependent systems. Time dependent linear systems
arise when a general trajectory is linearized to study its
stability. Periodic orbits give rise to periodic coefficient
linear systems.

Most current work on controlling chaotic systems fol-
lows the seminal work of Ott, Grebogi, and Yorke [1],
based on applying impulsive control at the crossing of
a surface of section. A review of this area was given
recently by Shinbrot, Grebogi, Ott, and Yorke [2]. At-
tempts to dictate the Lyapunov exponents of a controlled
system include Wiesel [3]. In that paper the modal de-
composition of the time dependent linear system was
used to dictate one Lyapunov exponent at a time. This
method was extended and applied to the reentry of a
spacecraft from orbit [4]. In this paper we report a fea-
sible method for setting all of the controlled system’s
Lyapunov exponents, and as well setting the principal
dynamical directions.

II. LINEAR QUADRATIC REGULATORS

The equations of motion for a nonlinear system can be
written

X =F(X,U,1t), (1)

where the state variables are written as the vector X,
and certain of the system parameters accessible to our
manipulation are termed the control vector U. When
this is linearized about a known solution X, (¢) and a
nominal control history Ug(t), we have the variational
problem

_oF oF
- X Xo,Uo ou Xo,Uo
— A(t)x + B(t)u. 2)

This is termed the “closed loop system,” that is, the
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system with the control term operating. Here x =
X(t) — Xo(t) and u = U(t) — Uy(t) are the first or-
der deviations of the state and control from their nom-
inal programs. It is our goal to choose u(t) to achieve
specified stability properties for the solution x¢(t), thus
ensuring that Xo(t) is linearly stable.

One technique for controlling such systems is the linear
quadratic regulator, or LQR controller; see, e.g., Bryson
and Ho [5]. Although most commonly used on constant
coefficient systems, it is applicable to time dependent sys-
tems as well. This technique chooses a control to mini-
mize the cost function

1 1 (Y
J = 5 (XTSfx)|t:tf + i/t (uTCu+ xTDx) dt (3)

over the time interval to < t < ty. The matrices C,
D, and Sy are symmetric and positive definite, and pe-
nalize, respectively, the use of control, deviations from
the nominal trajectory, and deviations from the nominal
trajectory final conditions. They are usually chosen as
diagonal matrices. The latter two weighting matrices are
needed, since until recently stability theory for general
time-dependent linear systems was not well known. The
choice of the weighting matrices is a problem with this
method. While arguments about maximum “acceptable”
values of u, x(t), and x(¢f) can be made, a well known
fact about LQR controllers is that any linear control so-
lution, stable or not, is the solution of an LQR problem
with some weighting matrices. Also, solutions minimiz-
ing (3) for “reasonable” weighting matrices exist which
are actually unstable.

In this work we will dispense with the weighting ma-
trix D for the state, and will replace merely discouraging
state deviations from the nominal trajectory with explicit
stability criteria for the “closed loop” system. The cost
function then becomes

1 [
J = 5/ u’ Cudt, (4)

to

subject to (2) as differential constraints. We proceed by
appending the constraints to the cost function with a
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vector of Lagrange multipliers 4, producing the control
Hamiltonian as

H= %uTCu +~T (Ax + Bu). (5)

Hamilton’s equations for the optimal control problem are

. OH oH
% = —

=%y =~ x (6)
The first of these reproduce (2), while the second becomes
g =-ATy. (7)

In addition, the optimality condition
0=%=CU+BT‘Y (8)

specifies that the solution minimizes (4). It can be im-

mediately solved to yield the control law
u=-C"1BT4. (9)

Equations (2), (7), and (9) must be solved as a boundary
value problem. Typically, we will have initial conditions
on x(tp), and are free to impose one other set of bound-
ary values. We make the choice v(t5) = S¢x(ts), which
seems the same as in (3) where this statement is a di-
rect consequence of the formulation of the problem. But
the matrix S¢, usually specified ad hoc as a symmetric,
positive definite matrix, will not be so here. We will find
that Sy is the key to imposing stability criteria, and will
leave its choice for the next section.

In classical LQR theory it is common to assert that
the variables x and -« are related by the matrix equation

v(t) = S#)x(?). (10)

Differentiating the above with respect to time, and re-
peatedly using (2), (7), (9), and (10) leads to

Sx + SAx — SBC'BTSx = — AT Sx. (11)

Since we wish this transformation to be true for all tra-
jectory deviations x(t), we are led to the matrix Riccati
equation

§=-54—-ATS +SBC™'BTs. (12)

Notice that this equation can be propagated indepen-
dent of either the closed loop linear system (2) or the
Lagrange multiplier equations (7). Also, with Sy spec-
ified ad hoc, final conditions are already known. This
leads to the “dual sweep” algorithm: Eq. (12) is inte-
grated backwards from S = Sy to the initial time, and
then (10) yields ~(¢o), enabling (2) and (7) to be inte-
grated forward. Alternately, the closed loop system can
be rewritten as

x=(A+ BG)x, (13)
where the gain matriz G(t) is given by

G(t) = -C™'BTs. (14)
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The gain matrix as a function of time is all that the real-
time control system needs to actually “fly” the trajectory.

III. STABILITY CONDITIONS

We wish to replace the ad hoc choice of Sy with ex-
plicit stability conditions on the closed loop dynamics.
[The weighting matrix C(t) must still be chosen by the
control designer, and it should be symmetric and posi-
tive definite. It specifies the degree to which individual
control terms are to be discouraged, and that is a human
decision.] Lyapunov exponents specify the stability of
a trajectory arc. The “open loop” Lyapunov exponents
(that is, without control) are easy to determine. The
open loop system is x = Ax, and this can be solved nu-
merically by integrating the state transition matrix ®, o,
which obeys

(D:c,O = AQw,Ov Qz,O(tO) = Iv (15)

where [ is the identity matrix. This can then be factored
at t = ty into its singular vectors and values as

®,.0(t;) = UoWoVE. (16)

The open loop Lyapunov exponents are then given by

Ai,O = In W;,0, (17)

ty — to
where the w; o are the elements of the diagonal matrix
Wo. The subscript “O” specifies the open loop system.
It would be more desirable to calculate (and specify) the
Lyapunov exponents of the closed loop system.

The state transition matrix for the closed loop system
could be similarly factored as

q>:13,C(t_f) :UCWCVg"v (18)

where the closed loop Lyapunov exponents A; ¢ give the
elements w; c = exp (A;,c(ty — ¢0)). The orthonormal
matrix V¢ gives the directions in space on a unit sphere
at t = to which evolve into the directions Uc at t =
ty of an ellipsoid whose axis lengths are w; c. These
axis lengths are functions of the closed loop Lyapunov
exponents A; ¢ = Inw; ¢ /(tf — to). It is our desire to be
able to specify all of the above in advance. In the control
theory of constant-coeflicient systems, this is termed “full
exponent—vector placement.” Of course, without good
reason to do otherwise, we are usually only interested in
specifying new closed loop Lyapunov exponents for the
system, and will leave the principal dynamical direction
vectors unaltered,

Uo =Ue, Vo =Vc. (19)
However, the method to follow allows the choice of all
three matrices. Then, with U, Ve, and the A; ¢ speci-
fied, the desired closed loop matrix ®, ¢ is determined.

Using the control law (9), the closed loop system and
Lagrange multiplier equations of motion can be rewritten
as
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%x = Ax — BC7'BT~, (20)
4 =—AT~. (21)

Then, calculating partial derivatives with respect to the
initial conditions x(to) gives

d ox(t) _ , 0x(t) _157 97(t)

3 (i) ~ Ao(te) - BC BT—ax(to)’ (22)
d ov(t) _ o(t)

Howtee) A o) ‘23)

The first quantity is just the closed loop state transition
matrix

Ox(t)
ax(to) ’

&, c(t) = (24)

while the second quantity is abbreviated as ®~(t) =
8v(t)/0x(to). The differential equations then become

d
55 0e0 = A%ec - BC™'BT®~, (25)
d

Since we have initial conditions ®, c(to) = I specified
by (24), the problem becomes finding initial conditions
@~ (to) to achieve given final conditions ®, ¢ (ts). Notice
that the open loop case is obviously ®~ (to) = {0}, where
{0} is the zero matrix.

The above equations are a linear boundary value prob-
lem. This problem can be solved numerically by inte-
grating Egs. (25) and (26) once to obtain the open loop
solution, and then N2 more times to obtain the partial
derivatives 0®;,c(ts)/0®~(to) numerically. Since this is
a linear problem in ®+(to), the numerical partial deriva-
tives are exact to within roundoff error. One iteration of
a Newton-Rhapson scheme

#y(t0) = { G2l (o, ct0) - a000)] (20)

will converge to the desired values of ®,c(ty) and
®~(to). [Note that the quantities above are suitably
partitioned, so that ®; are stored as N2 vectors, and
0%,,c(ts)/0®(to) is an N? by N2 matrix. This ma-
trix must be invertible: this is termed the controllability
condition.]

Notice, taking partial derivatives of (10) with respect
to the initial conditions x(¢o), that

®,(t) = S@t)®s,c(t)- (28)

Then knowledge of ®~(to) gives S(to) = P~ (to), since
®,,c(to) = I. Then integrating the Riccati equation (12)
forward, the value of S(ty) = Sy is obtained. So Sy is
specified implicitly by the choice of the Lyapunov expo-
nents and principal dynamical directions for the closed
loop system. The matrix Sy is not likely to be a pos-
itive definite matrix, and is very unlikely to be diago-
nal. This means that we have not found a true minimum
of (3) in x,u space. However, if C(t) is positive defi-

nite, then we do have a true minimum of (4) in the con-
trol directions. The requirement to minimize an ad hoc
positive-definite function of the state, both within and at
the end of the time interval, has been discarded, and re-
placed with complete freedom to specify the closed loop
Lyapunov exponents and principal dynamical directions.
Knowing S(to), the Riccati equation can be integrated
forwards defining S(¢) and the gain matrix G(t) through
(14). With the gain matrix defined, the closed loop sys-
tem in the form (13) can be used in real time to control
the system.

Much of modern work on control of chaotic systems
actually attempts to stabilize unstable periodic orbits
imbedded within the attractor. The known pole place-
ment algorithm for periodic systems, Calico and Wiesel
[6], has the same problem as that of [3]: only one ex-
ponent at a time may be placed. In Floquet theory, the
state transition matrix for a periodic orbit is decomposed
as

&, (t) = E(t) exp (A(t — to)) E~(to), (29)

where E(t) is a matrix periodic with the same period
as the underlying orbit, and the entries of the diagonal
matrix A,)\; are termed the Poincaré exponents. Both
the Poincaré exponents and the matrix E(t) are possibly
complex quantities. Evaluating (29) at the end of one

period ty — to = 7 gives the monodromy matrix, and
using the fact that E(t) is periodic yields
&, (1) = E(to) exp(AT)E~(to). (30)

Open loop stability exponents are easily calculated from
the above using a standard eigenvalue-eigenvector rou-
tine.

But (30) can also be used to dictate both the closed
loop Poincaré exponents and the closed loop modal ma-
trix E(to). [Poincaré exponents are much to be preferred
over Lyapunov exponents for periodic orbits. The princi-
pal dynamical direction matrices U, V do not close upon
themselves at the end of one period, while this is auto-
matic with Floquet modal vectors E(t).] We are free to
change one or more offensive Poincaré exponents, proba-
bly leaving the modal matrix E(to) unchanged, and then
(30) will supply the desired closed loop state transition
matrix @, ¢ (7). The LQR theory discussed earlier then
goes through with no further modifications. Once the
Poincaré exponents are set over one period, the trajec-
tory remains linearly stable forever.

IV. NUMERICAL EXPERIMENTS

The algorithm of the preceding section has been ap-
plied to several standard problems. To begin, we have
considered the Lorenz problem [7] modified with a con-
trol input,

z=o0(y—x),
y=—zz+azx—y+u, (31)

2 =zxy — bz.

Parameter values were 0 = 16, a = 40, and b = 4,
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while u(¢) is the scalar control input. The matrix C =1
becomes a scalar, and all integrations began at initial
conditions on the attractor ¢ = 2.426 881 355 528,
y = 2.577 259 040 064, and z = 26.689 700 667 84. The
control appears on the state y following Chen and Chou
[8]. Figure 1 shows both the open loop and closed loop
Lyapunov exponents as a function of t¢, with the open
loop values shown as solid curves. Values of the open loop
Lyapunov exponents for this trajectory as ty — oo are
1.37, 0, and —22.37. The open loop Lyapunov exponents
are clearly approaching these values before ty ~ 1.2, at
which point the smallest exponent can no longer be reli-
ably calculated in double precision arithmetic.

Closed loop Lyapunov exponents are shown in Fig. 1
as dots, with each dot representing one control system so-
lution. Closed loop exponents were chosen to be —1, —2,
and —22, with no alteration to the principal dynamical
directions. The algorithm works very well until t; =~ 0.8,
after which the desired value for the smallest exponent
is not achieved. The reason for both of these problems
is the same: the elements of the W matrix now span
over 13 orders of magnitude, and the smallest of the A; ¢
are incorrect. However, the larger two closed loop Lya-
punov exponents are correctly set until about ty = 1.2.
Past this point double precision is not adequate for this
problem. We have also controlled this system with the
same closed loop Lyapunov exponents, but the principal
directions for the largest and smallest exponents were
switched. Results were quite similar to the unswitched
case.

We have also controlled the Duffing problem in the
chaotic region

—_
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FIG. 1. Open loop (solid lines) and closed loop (dot) Lya-
punov exponents for the Lorenz system, with no change in
principal directions, as a function of final time.
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T =,
=z —z3 4 0.4cos(t) — 0.25v + u, (32)

with initial conditions on the attractor of z(t;) =
—1.241 861 655 22 and v(to) = 0.500 205 770 569. The
control was placed on the velocity state, assuming that,
as a mechanical system only the velocity state could be
directly influenced by an external force. Figure 2 shows
the open and closed loop exponents, where closed loop
exponents were chosen to be A\; ¢ = —0.1 and —0.7. The
control method was successful until about ¢y ~ 25. As
with the Lorenz problem, this is about the time that the
diagonal elements of the W matrix span more than the
13 significant figures permitted in double precision arith-
metic.

Returning to the Lorenz system, the initial condi-
tions z = —12.315 124 003 712, y = 0, and z =
51.695 028 436 029 are periodic with period r =
1.031 419 488 278 time units. This periodic orbit, shown
in Fig. 3, samples both “wings” of the “butterfly,” and
has open loop Poincaré exponents of \; = 1.4625 + 0z,
0+ 0z, and —22.4624 + 0¢. An attempt to move only the
unstable root to a value of minus one led to an interesting
insight. Expression (28) can be rewritten as

S(t) = &4 (t)2; (1) (33)

Both matrices ®,(t) and &, c(t) are well behaved, but
the latter matrix has a dynamical mode which is decreas-
ing in amplitude exponentially, like exp(—22.4¢). This
means that S(t) increases from its reasonable initial con-
ditions at a maximal rate of exp(+22.4t), and the gain

‘-‘—1
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N— o |

t (sec)
f

FIG. 2. Open loop (solid) and closed loop (dots) Lypaumov
exponents for the Duffing oscillator as a function of final time.



53 FULL STABILITY-EXPONENT PLACEMENT IN CHAOTIC SYSTEMS

FIG. 3. An unstable periodic orbit imbedded in the Lorenz
attractor seen in its x, 2 projection. Symbols locate the opti-
mal positions for control.

matrix peaks very sharply near t;. It was therefore nec-
essary to change the most negative Poincaré exponent as
well, and new values of \; = —1+07, —2+40¢, and —3+ 01
were chosen.

Figure 4 shows the three elements of the gain matrix
G(t) over one period. (The gain matrix has units which
depend on which particular element is referred to, so no
units are shown in the figure.) It is obvious in one sense
that u”Cu has been minimized by reducing the control
usage to sharp spikes. (In fact, the gain spikes at t ~ 0.4

-200 0 200 400 600
1 | I ]

-400
!

-600

t (sec)

FIG. 4. Gain matrix elements G;(t) for a controlled peri-
odic orbit in the Lorenz system.
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have been truncated to show detail in the rest of the
function. They really extend to G;; ~ 10°.) The lo-
cation of these moments of intense control are shown in
Fig. 3 as symbols on the periodic orbit. The fact that the
gain functions are well approximated by § functions indi-
cates that the optimal control is almost an OGY control.
However, this method locates the optimal positions for
the required surfaces of section, as well as allowing com-
plete specification of the stability properties. These same
two positions on the periodic orbit also appear when the
closed loop exponents are set to other values.

Finally, to consider a larger order system, the re-
stricted problem of three bodies from orbital mechanics
was chosen. This represents the motion of a virtually
massless particle in the gravitational field of two mas-
sive bodies executing circular motion about their com-
mon center of mass. The massive objects (the primaries)
have masses 1 — p and g in the usual dimensionless co-
ordinates [9]. Without control, this conservative system
has Hamiltonian

1
H = 5 (pﬁ +p§ +P3) + P2y — PyT
_l-w_ L) (34)
T T2

where

= (z—-p)?+y*+2%
r%:(m+1—p)2+y2+z2. (35)

The mass parameter was chosen to be 4 = 1/3, and initial
conditions x = 0.035 899 801 22, p,, = —1.397 699 585 89
with all other initial states zero, are periodic with a pe-
riod of 7 = 3.445 161 232 351. Since the momenta are the
inertial velocity components, allowing the spacecraft to
accelerate in any direction corresponds to placing control
terms on all three p; equations of motion. Partitioning
the state vector as X7 = (z, vy, 2, pa, Py, P) and
choosing the B, C matrices as

SO OOO

O OO0 OO

_HOOOCOO
S = O
= o o

implements this control, and specifies that the average
squared spacecraft acceleration due to control over one
orbit is to be minimized. Open loop Poincaré exponents
are 0 &+ 0.77537, 0 £ 66417, and 0 % 0z, so this orbit is
linearly stable, or at least as stable as a Hamiltonian
system can be.

Control was used to set the closed loop Poincaré expo-
nents to —0.240.77537, —0.3+0.6641¢, and —0.540z. The
eigenvector matrix E(tg) was not altered. (Of course,
care must be exercised in choosing new exponents that
the resulting closed loop matrix ®, ¢ will be real.) The
eighteen elements of the gain matrix G(t) are shown as
functions of time in Fig. 5. No large spikes are apparent,
although the gain matrix G(t) is clearly not periodic. (No
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t (sec)

FIG. 5. Gain matrix elements G;;(t) for a controlled peri-
odic orbit in the restricted problem of three bodies.

units are shown for the G;j components, since the gain
matrix is a mixed-unit quantity.)

V. DISCUSSION AND CONCLUSIONS

In this paper we have reported a method to a prior:
dictate all of the closed loop Lyapunov or Poincaré ex-
ponents and all of the principal dynamical directions of
a dynamical system, while minimizing a positive definite

function of the control. The development leads to a linear
boundary value problem, which can be solved in one iter-
ation. It has been successfully applied to several example
problems, and both stability exponents and principal di-
rections can be dictated at will.

The limitation to a finite time interval is an unavoid-
able consequence of the chaotic nature of the underlying
dynamics. Since there are instabilities, ®, will grow un-
bounded, and the system cannot be reliably predicted for
an unbounded time period. However, with the freedom
to set both closed loop stability exponents and principal
dynamical directions, control over one time interval ¢, ¢,
can be spliced into control over the next time interval t,,
t3. The method can thus be extended to an arbitrarily
long interval of time. Admittedly, this will only be feasi-
ble in problems where the required computation can be
completed faster than real time. One example of such a
problem is the multiple encounter mission of the Galileo
spacecraft at Jupiter, where individual orbits will take
months of real time. An exception is the case of periodic
orbits, where the gain matrix can be precomputed and
used over and over again for each period. Only the speed
at which the system can retrieve the gain matrix then
limits the applicability of the method.

Also, several extensions to this method are also easily
done. In the case of the thruster controlled spacecraft, it
seems more natural to the author to minimize the total
change in spacecraft velocity due to control, and thus
minimize the fuel usage. But this implies a cost function

ty
J = %/ {uTCu}l/2 dt, (37)
to

with the same B and C matrices used earlier. This leads
to a nonlinear boundary value problem, which would be
solved by an iterative technique.
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